PARENTS: LORENTZ TRANSFORMATIONS RELATIVITY WORKSHOP WORKSHOPS ARCHIVE =============================================== Speed cumulation. Georges. =============================================== Let Xa,Xb,Xc referentials moving with relative speeds Vab,Vbc,Vac. We can write: {Xa}={cta,xa1,xa2,xa3} {Xb}={ctb,xb1,xb2,xb3} {Xc}={ctc,xc1,xc2,xc3} =============================================== Let further: [Cab],[Cbc],[Cac] matrices of pseudo-rotation raspectively Xa/Xb,Xb/Xc,Xa/Xc. We have; {Xb}=[Cab]{Xa} {Xc}=[Cbc]{Xb} thus: {Xc}=[Cbc][Cab]{Xa}=[Cac]{Xa} thus: [Cac]=[Cbc][Cab] =============================================== Now: [Cbc]= |shALPbc..chALPbc..0..0| |chALPbc..shALPbc..0..0| |0........0........1..0| |0........0........0..1| [Cab]= |shALPab..chALPab..0..0| |chALPab..shALPab..0..0| |0........0........1..0| |0........0........0..1| and [Cac]=[Cbc][Cab]= |sh(ALPbc+ALPab)..ch(ALPbc+ALPab)..0..0| |ch(ALPbc+ALPab)..sh(ALPbc+ALPab)..0..0| |0................0................1..0| |0................0................0..1| But: [Cac]= |shALPac..chALPac..0..0| |chALPac..shALPac..0..0| |0........0........1..0| |0........0........0..1| so that: ALPac=ALPbc+ALPab (pseudo-rotation angles add, not speeds). =============================================== Setting: thALPab=Vab/C thALPbc=Vbc/C thALPac=Vac/C we have: th(ALPbc+ALPab)= thALPac=(thALPbc+thALPab)/(1+thALPbc*thALPab), or Vac/C = (Vbc/c + Vab/c)/(1+VbcVab/c^2) or Vac=(Vbc + Vab)/(1+VbcVab/c^2) Which is the SR speed cumulation formula. Let's note that 1.For slow speeds the denominator can be approximated as 1 and the SR formula reduces to the Galileo-Newtonian: Vac=(Vbc + Vab). 2.For one of the cumulated speeds, say Vbc, approaching c Vac approaches c: Vac-->(c + Vab)/(1+c*Vab/c^2) = c The same holds of course for both cumulating speeds approaching c. =============================================== Georges. =============================================== PARENTS: LORENTZ TRANSFORMATIONS RELATIVITY WORKSHOP WORKSHOPS ARCHIVE